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LETTER TO THE EDITOR

Dependence of critical level statistics on the sample shape

H Potempa and L Schweitzer
Physikalisch-Technische Bundesanstalt, Bundesallee 100, D-38116 Braunschweig, Germany

Received 27 April 1998

Abstract. The level-spacing distribution of consecutive energy eigenvalues is calculated
numerically at the metal–insulator transition for 3D systems with different cuboid shapes. It is
found that the scale independent criticalPc(s) changes as a function of the aspect ratio of the
samples, while the critical disorderWc/V = 16.4 remains the same. We use our data to test
whether an expression for the small-s behaviour of the level statistics proposed by Kravtsov and
Mirlin for the metallic regime is applicable also at the critical point. For this reason, a shape
dependent dimensionless critical conductancegc has been extracted from the small-s behaviour
of the critical level statistics. Our result for a cubic sample,gc = 0.112± 0.005, is in good
agreement with a value obtained previously from calculations using the Kubo formula.

Energy eigenvalue correlations provide general tools for the statistical description of
disordered materials. Among them, the nearest neighbour level spacing distributionP(s)

represents one of the simplest statistics. Here,s = |Ei+1 − Ei |/1 is the energy difference
of consecutive eigenvaluesEi divided by the mean level spacing1. Nevertheless, knowing
P(s), it is possible to tell whether a given system exhibits metallic or insulating behaviour
at temperatureT = 0 K.

Considerable attention has recently focused on the special case of critical statistics which
were found at the metal–insulator transition in disordered 3D [1–9] and 2D [10–13] systems.
In all cases, the numerically obtained critical level statistics were noticed to be independent
of the system sizeL. This is different in the metallic and insulating regimes where a
size dependence has been observed. In the limitL → ∞, the nearest neighbour spacing
distribution follows the Poissonian decay,P(s) = exp(−s), for disorder strengthW larger
than the critical disorderWc. The metallic side,W/Wc < 1, is well described by random
matrix theory (RMT) [14–17]. As in the metallic phase, the criticalPc(s) depends on the
symmetry of the Hamiltonian describing the system under consideration. In addition, and in
contrast to the universal RMT description for the metallic phase, the criticalPc(s) depends
also on the spatial dimension. Up to now, the respective forms ofPc(s) are known only
from numerical studies.

In [7] using the Anderson model, the application of an Aharonov–Bohm-flux was shown
not only to change the universality class of the level statistics due to breaking of time reversal
symmetry. It has also been demonstrated that, depending on the strength of the flux, there
exists a set of scale independent critical spacing distributions. These are associated with a
continuous crossover from orthogonal to unitary symmetry [7, 18]. It is well known that
the corresponding Hamilton matrix can be transformed such that the AB-flux is completely
absorbed into the boundary conditions. So the question arises, whether or notPc(s) does
in general depend on the boundary conditions applied. Recently, it has been shown [19]
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thatPc(s) is in fact sensitive to a change of the periodic boundary conditions, which were
always applied previously, to Dirichlet boundary conditions in one, two and three directions.

In this letter we show thatPc(s) is sensitive to the shape of the sample, too. We
present results of a numerical investigation on various finite size cuboids with square base
L2

0 and heightLz, characterized by the aspect ratioq = Lz/L0. Assuming that a formula
for the small-s behaviour ofP(s), proposed by Kravtsov and Mirlin [20] for the metallic
regime, may approximately be used at the metal–insulator transition, a dimensionless critical
conductancegc can be extracted from the small-s behaviour of the calculatedPc(s). We
find that gc also depends on the sample shape and that the value obtained for the cubic
system is in close agreement with a result achieved previously by a different method.

We investigate the conventional 3D Anderson model which is described by the
Hamiltonian

H =
∑
m

εmc
†
mcm + V

∑
〈m6=n〉

(c†mcn + c†ncm). (1)

The creation,c†m, and annihilation,cm, operators act on the states of non-interacting electrons
at the sites{m, n} of a 3D simple cubic lattice. The disorder energiesεm are chosen to be a
set of independent random numbers distributed in the interval [−W/2,W/2] with probability
1/W , whereW denotes the disorder strength measured in units ofV . We consider only
transfer between nearest neighbour sites. Periodic boundary conditions are applied in all
directions. The sizes of the different systems investigated are described by a quadratic base
L2

0 and a heightLz ranging from 8 to 200 lattice constantsa. The shape of the system is
conveniently denoted by the dimensionless aspect ratioq = Lz/L0. For all shapes, a size
independent metal–insulator transition is found at a critical disorder ofWc/V = 16.4.
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Figure 1. The critical level spacing distributionPc(s, q) versus the level spacings for aspect
ratios q = 1 (?, L0 = Lz = 30a), q = 1/7 (◦, L0 = 56a, Lz = 8a) and q = 20 (•,
L0 = 10a, Lz = 200a). The solid line is the Poissonian decay exp(−s). The inset displays the
semi-logarithmic plot of the large-s behaviour.

The eigenvalues used in our study have been taken from an interval [−0.5V, 0.5V ]
around the band centre. They are obtained by direct diagonalization using a Lanczos
algorithm. For each aspect ratio, several system sizes are computed with a large number of
different realizations of the disorder potentials so that for each particular case the number
of eigenvalues exceeded 105.
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In figure 1 the size independent critical level spacing distributionPc(s, q) is shown
for different aspect ratios: a flat quasi-2D sample (q = 1/7), a cube (q = 1) and a long
narrow bar (q = 20). Deviations of the aspect ratio fromq = 1 result in critical spacing
distributions that seem to approach the Poissonian decay,P(s) = exp(−s), as q → 0
(quasi-2D sample) orq →∞ (quasi-1D sample).
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Figure 2. The second moment of the critical level spacings,Ic(q), versus the aspect ratio
q = Lz/L0. The corresponding system sizes are in the range from (L0/a = 80, Lz/a = 8) to
(L0/a = 10, Lz/a = 200).

To give a more quantitative description, we have calculated the second momentIc(q)

of the critical level spacings

Ic(q) = 1
2〈s2〉 = 1

2

∫ ∞
0
s2Pc(s, q)ds (2)

which is shown in figure 2 as a function of the aspect ratioq = Lz/L0. The cube (q = 1)
represents the minimum value of the second moment,Ic(1) = 0.705± 0.005, whereas
Ic(q) → 1 for aspect ratios that strongly deviate from the cube. Our value ofIc(q = 1)
is in accord with the result of [6]. From the symmetric appearance of the semi-logarithmic
plot in figure 2 it becomes apparent thatIc(q)→ Ic(1/q) when crossingq = 1.

At present, there exists no complete analytical theory which describes the critical energy
level correlations. To compare our results, we therefore have to make do with a formula
proposed recently [20] for the metallic regime. The two-level correlation function is defined
as

R(s) = 1

〈ρ〉2 〈ρ(E)ρ(E + ω)〉 (3)

whereρ(E) is the density of states at energyE, s = ω/1 and〈...〉 denotes averaging over
realizations of the disorder potential. In the metallic regime and for smalls, R(s) becomes
[20]

R(s) = π2

6

(
1+ 3b

π6g2

)
s. (4)

This expression contains corrections to the usual Wigner–Dyson form in the region
ω ∼ 1� Ec, whereEc is the Thouless energy. Equation (4) depends on the dimensionless
conductanceg � 1, the spatial dimensions, the boundary conditions and also on the shape
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of the system via the diffusive modes [20]. For cuboidsL2
0 × Lz and periodic boundary

conditions one gets

b = 9/16

(2+ q2)2

∞∑
nx,ny ,nz=−∞
n2
x+n2

y+n2
z 6=0

1

(n2
x + n2

y + n2
zq
−2)2

. (5)

At the critical point, whereg = gc . 1, the result of the expansion made in [20] is
expected to give only qualitatively correct behaviour. In order to test this expectation, we
tentatively assume here that equation (4) actually holds at the metal–insulator transition.
Therewith, we are able to extract a shape dependence of the size independent critical
conductancegc from the small-s part of the calculatedPc(s, q), because for smalls,
R(s) = ∑

k P (k, s) + δ(s) ' P(0, s), whereP(k, s) is the probability density of finding
exactlyk eigenvalues within the intervals.
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Figure 3. The shape dependent critical conductancegc(q) as a function of the aspect ratioq.

The critical conductance as a function of the sample shape is shown in figure 3. Here,
the values forq = 0.1 and q = 20 have been omitted, because it was not possible to
accurately extract the small-s gradient from the data. Again, the already noticed symmetry
in replacingq → 1/q when crossingq = 1 becomes evident.

Our result for the cubic system,gc(1) = 0.112±0.005, agrees very well with the value
gc = 0.10± 0.01 obtained from the numerical calculation of the Kubo conductivity [21].
Since the two methods for determining the critical conductance are completely different,
the perfect agreement of the numerical values is remarkable. If this accordance is not
merely accidental, it has to be understood why the result of the expansion in [20] holds also
quantitatively at the critical point. For Dirichlet boundary conditions, we obtain a numerical
valuegc = 0.079± 0.002 for the cubic system.

In mesoscopic systems, the decay ofgc(q) accompanied with deviations from the cubic
shape may explain some of the different values (0.03–0.2) [22] reported for measurements
on various samples. However, the question remains to be answered, whether or not the
expression for the small-s behaviour proposed by Kravtsov and Mirlin [20] for the metallic
regime is really applicable at the metal–insulator transition.

In conclusion, a dependence of the scale independent critical level statistics on the shape
of the samples has been detected at the Anderson transition in 3D systems. Using a formula
which has been proposed for the metallic regime [20] to fit our data obtained at the critical
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point, we find a shape dependence of the scale independent conductancegc. Provided that
this method of extracting the conductance is justified also at the critical point, the various
experimentally obtained critical conductances reported in the literature can possibly be at-
tributed to different shapes of the samples investigated.

We would like to thank G Montambaux and I Kh Zharekeshev for useful discussions.
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